Classification Algorithms - Part II
Outline

• Introduction
• Linear Discriminant Functions
• The Perceptron Algorithm
• Performance Assessment
Introduction

- Previously, our major concern was to design classifiers based on probability density functions.
- Now, we will focus on the design of linear classifiers, regardless of the underlying distributions describing the training data.
- The major advantage of linear classifiers is their simplicity and computational attractiveness.
- Here, our assumption is that all feature vectors from the available classes can be classified correctly using a linear classifier, and we will develop techniques for the computation of the corresponding linear functions.
The solid and empty dots can be correctly classified by any number of linear classifiers. H1 (blue) classifies them correctly, as does H2 (red). H2 could be considered "better" in the sense that it is also furthest from both groups. H3 (green) fails to correctly classify the dots.
Introduction

FIGURE 2.1
(a) Linearly separable 2-class classification problem; (b)–(c) 2-class classification problems that are not linearly separable.
Linear Discriminant Functions

- A classifier that uses discriminant functions assigns a feature vector x to class ω_i if
 $$g_i(x) > g_j(x) \text{ for all } j \neq i$$

 where $g_i(x)$, $i = 1, \ldots, c$, are the discriminant functions for c classes.

- A discriminant function that is a linear combination of the components of x is called a *linear discriminant function* and can be written as
 $$g(x) = w^T x + w_0 = w_1 x_1 + w_2 x_2 + \ldots + w_d x_d + w_0$$

 where w is the *weight vector* and w_0 is the *bias* (or threshold weight).
Linear Discriminant Functions

• For the two-category case, the decision rule can be written as

\[
\text{Decide: } \omega_1 \text{ if } g(x) > 0 \\
\omega_2 \text{ otherwise}
\]

• The equation \(g(x) = 0 \) defines the decision boundary that separates points assigned to \(\omega_1 \) from points assigned to \(\omega_2 \).

• When \(g(x) \) is linear, the decision surface is a hyperplane whose orientation is determined by the normal vector \(\mathbf{w} \) and location is determined by the bias \(\omega_0 \).
Linear Discriminantant Functions

\[x_1 + 2x_2 - 4 > 0 \]

\[x_1 + 2x_2 - 4 = 0 \]

\[x_1 + 2x_2 - 4 < 0 \]
Linear Discriminantant Functions

Geometry for the decision line. On one side of the line it is \(g(x) > 0(+) \) and on the other \(g(x) < 0(-) \).
Multicategory Case:

- There is more than one way to devise multicategory classifiers with linear discriminant functions.
- **One against all:** we can pose the problem as c two-class problems, where the i’th problem is solved by a linear discriminant that separates points assigned to ω_i from those not assigned to ω_i.
- **One against one:** Alternatively, we can use $c(c-1)/2$ linear discriminants, one for every pair of classes.
- Also, we can use c linear discriminants, one for each class, and assign x to ω_i if $g_i(x) > g_j(x)$ for all $j \neq i$.
Linear Discriminant Functions

(a) Boundaries separate \(w_i \) from \(\neg w_i \).

(b) Boundaries separate \(w_i \) from \(w_j \).

Figure: Linear decision boundaries for a 4-class problem devised as (a) four 2-class problems (b) 6 pairwise problems. The pink regions have ambiguous category assignments.
Linear Discriminant Functions

• To avoid the problem of ambiguous regions:
 – Define c linear discriminant functions
 – Assign x to ω_i if $g_i(x) > g_j(x)$ for all $j \neq i$.

• The resulting classifier is called a linear machine
Figure: Linear decision boundaries produced by using one linear discriminant for each class.
Linear Discriminant Functions

- The boundary between two regions R_i and R_j is a portion of the hyperplane given by:

$$g_i(x) = g_j(x) \quad \text{or} \quad (w_i - w_j)^t x + (w_{i0} - w_{j0}) = 0$$

- The decision regions for a linear machine are convex.
The Perceptron Algorithm

• The perceptron algorithm is appropriate for the 2-class problem and for classes that are linearly separable.
• The perceptron algorithm computes the values of the weights w of a linear classifier, which separates the two classes.
• The algorithm is iterative. It starts with an initial estimate in the extended $(d + 1)$-dimensional space and converges to a solution in a finite number of iteration steps.
• The solution w correctly classifies all the training points assuming linearly separable classes.
• Note that the perceptron algorithm converges to one out of infinite possible solutions.
• Starting from different initial conditions, different hyperplanes result.
The Perceptron Algorithm

- The update at the \(i \)th iteration step has the simple form:

\[
\mathbf{w}(t + 1) = \mathbf{w}(t) - \rho_t \sum_{x \in Y} \delta_x x
\]

- \(Y \) is the set of wrongly classified samples by the current estimate \(w(t) \),
- \(\delta_x \) is \(-1\) if \(x \in \omega_1 \), and \(+1\) if \(x \in \omega_2 \),
- \(\rho_t \) is a user-defined parameter that controls the convergence speed and must obey certain requirements to guarantee convergence (for example, \(\rho_t \) can be chosen to be constant, \(\rho_t = \rho \)).
- The algorithm converges when \(Y \) becomes empty.
The Perceptron Algorithm

- Move the hyperplane so that training samples are on its positive side.
The Perceptron Algorithm

• Once the classifier has been computed, a point, \(x \), is classified to either of the two classes depending on the outcome of the following operation:

\[
f (w^T x) = f (w_1 x(1) + w_2 x(2) + \cdots + w_d x(d) + w_0)
\]

• The function \(f (\cdot) \) in its simplest form is the step or sign function (\(f (z) = 1 \) if \(z > 0 \); \(f (z) = -1 \) if \(z < 0 \)).

• However, it may have other forms; for example, the output may be either 1 or 0 for \(z > 0 \) and \(z < 0 \), respectively.

• In general, it is known as the activation function.
The Perceptron Algorithm

- The basic network model, known as perceptron or neuron, that implements the classification operation is shown below:
The Perceptron Algorithm

Example
Figure shows the dashed line

\[x_1 + x_2 - 0.5 = 0 \]

corresponding to the weight vector \([1, 1, -0.5]^T\), which has been computed from the latest iteration step of the perceptron algorithm (3.9), with \(\rho_t = \rho = 0.7\). The line classifies correctly all the vectors except \([0.4, 0.05]^T\) and \([-0.20, 0.75]^T\). According to the algorithm, the next weight vector will be

\[
 w(t + 1) = \begin{bmatrix} 1 \\ 1 \\ -0.5 \end{bmatrix} - 0.7\begin{bmatrix} 0.4 \\ 0.05 \\ 1 \end{bmatrix} - 0.7\begin{bmatrix} -0.2 \\ 0.75 \\ 1 \end{bmatrix}
\]

or

\[
 w(t + 1) = \begin{bmatrix} 1.42 \\ 0.51 \\ -0.5 \end{bmatrix}
\]

The resulting new (solid) line \(1.42x_1 + 0.51x_2 - 0.5 = 0\) classifies all vectors correctly, and the algorithm is terminated.
The Perceptron Algorithm

Some important points related to perceptron:

- For a fixed learning parameter, the number of iterations (in general) increases as the classes move closer to each other (i.e., as the problem becomes more difficult).
- The algorithm fails to converge for a data set that is not linearly separable. **Then, what should we do?**
- Different initial estimates for w may lead to different final estimates for it (although all of them are optimal in the sense that they separate the training data of the two classes).
Performance Assessment

• We can use **accuracy** or **error rate** to assess performance of classifiers.

• **Accuracy** is the ratio of correct classifications.

• **Error rate** is the ratio of incorrect classifications.

• **Accuracy = 1 - Error rate.**

• Example:
 10 patterns belonging to the same class
 Number of correctly classified patterns = 8
 Number of incorrectly classified patterns = 2
 Accuracy = 8 / 10 = 0.8 = 80%
 Error Rate = 2 / 10 = 0.2 = 20%
Performance Assessment

• Performance is evaluated on a testing set.
• Therefore, entire dataset should be divided into
 – training set
 – testing set
• Classification model is obtained using the training set.
• Classification performance is assessed using the testing set.
Performance Assessment

- For objective evaluation, *k-fold cross validation* technique is used. Why?
- Example: $k = 3$

Overall accuracy = \(\frac{\text{Accuracy}_1 + \text{Accuracy}_2 + \text{Accuracy}_3}{3}\)
Performance Assessment

- We can also use a **confusion matrix** during assessment.
- The example below shows predicted and true class labels for a 10-class recognition problem.

<table>
<thead>
<tr>
<th>true class i</th>
<th>'0'</th>
<th>'1'</th>
<th>'2'</th>
<th>'3'</th>
<th>'4'</th>
<th>'5'</th>
<th>'6'</th>
<th>'7'</th>
<th>'8'</th>
<th>'9'</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>'0'</td>
<td>97</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>'1'</td>
<td>0</td>
<td>98</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>'2'</td>
<td>0</td>
<td>0</td>
<td>96</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>'3'</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>95</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>'4'</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>98</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>'5'</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>97</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>'6'</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>98</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>'7'</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>98</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>'8'</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>96</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>'9'</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>95</td>
<td>0</td>
</tr>
</tbody>
</table>
Performance Assessment

• We can also use precision, recall and F-score for performance assessment.

• For classification tasks, the terms
 – true positives (TP)
 – true negatives (TN)
 – false positives (FP)
 – false negatives (FN)

compare the results of the classifier under test with trusted external judgments.

• The terms positive and negative refer to the classifier's prediction (expectation), and the terms true and false refer to whether that prediction corresponds to the external judgment (observation).
Performance Assessment

• This can be illustrated by the table below:

<table>
<thead>
<tr>
<th></th>
<th>Predicted Positive</th>
<th>Predicted Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual Positive</td>
<td>TP</td>
<td>FN</td>
</tr>
<tr>
<td>Actual Negative</td>
<td>FP</td>
<td>TN</td>
</tr>
</tbody>
</table>
Performance Assessment

• Precision and recall are then defined as:
 – Precision = \(\frac{TP}{TP + FP} \)
 – Recall = \(\frac{TP}{TP + FN} \)

• Here, accuracy corresponds to
 – Accuracy = \(\frac{TP + TN}{TP + FP + TN + FN} \)

• F-score is the harmonic mean of precision and recall:
 – F-score = \(\frac{2 \cdot (\text{precision} \cdot \text{recall})}{\text{precision} + \text{recall}} \)
Summary

• Introduction
• Linear Discriminant Functions
• The Perceptron Algorithm
• Performance Assessment
References

